Charge state breeding experiences and plans at TRIUMF.
نویسندگان
چکیده
At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breeding efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.
منابع مشابه
Acceleration of Charge Bred Radioactive Ions at Triumf
Most ion sources at ISOL (isotope separation on-line) facilities can produce only singly charged ions but efficient post acceleration requires high charge states. For light ions this can be achieved by stripping after a first moderate acceleration but with heavy ions this is no longer possible and charge state breeding is necessary. The breeder should be able to work at a high efficiency for th...
متن کاملOperation of an Ecris Charge State Breeder at Triumf
After initial commissioning of the charge state breeder for radioactive ions at the TRIUMF/ISAC facility further tests on the performance of the system have been done., One of the major problems found was the high background of stable ions from the ECR source. The main source of those is the residual gas and sputtered material from the plasma chamber wall and from the surrounding electrodes. Al...
متن کاملCharge breeding of radioactive ions with EBIS and EBIT
A charge state breeder, which transforms externally injected singly charged ions to a higher charge state q+, is an important tool which has applications within atomic, nuclear and even particle physics. The charge breeding concept of radioactive ions has already been demonstrated at REX-ISOLDE/CERN with the use of an Electron beam Ion Source (EBIS) and at several facilities employing Electron ...
متن کاملChargebreeding with the MAXEBIS
The demand of exotic ions prior to their injection into an accelerator has driven the development of the charge breeding method. Existing facilities like REX-ISOLDE or ISAC at TRIUMF are already using a charge state booster for the post acceleration of radioactive ions. Planned facilities like MAFF, SPES, SPIRAL II and EURISOL have identified the need of a breeding system because of the demand ...
متن کاملCharge Breeding Experiences with an ECR and an EBIS for CARIBU
The efficient and rapid production of a high-quality, pure beam of highly charged ions is at the heart of any radioactive ion beam facility. An ECR charge breeder, as part of the Californium Rare Ion Breeder Upgrade (CARIBU) program at Argonne National Laboratory, was developed to fulfil this role. The charge breeding efficiency and high charge state production of the source are at the forefron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2016